El teorema de Bolzano es un teorema sobre funciones continuas definidas sobre un intervalo, el cual plantea que si una función f(x) es continua en [a,b] y f(a) y f(b) son de distinto signo, existe por lo menos un punto entre a y b para el cual f(c)=0. Interpretación geométrica Geométricamente, el teorema establece que si dos puntos (a,f(a)) y (b,f(b)) de la gráfica de una función continua están situados en diferentes lados del eje x, entonces la gráfica intersecta al eje en al menos un punto entre a y b. El teorema como tal no especifica el número de puntos, solo afirma que como mínimo existe uno. Demostración Supongamos que f(a)<0 y f(b)>0. (La demostración sería análoga si supusiéramos f(a)>0 y f(b)<0.) Consideremos el punto medio de [a,b]: (a+b)/2. Si f((a+b)/2)=0 queda demostrado el teorema. Sino, f será positiva o negativa en (a+b)/2. Tomemos una de las mitades del intervalo [a,b] donde la función sea negati...
Analizar y estudiar todo con respecto al cálculo y al matemático y filósofo Bernard Bolzano, y sus aportes al cálculo. En matemáticas, se le conoce por el teorema de Bolzano, así como por el teorema de Bolzano-Weierstrass, que esbozó como lema de otro trabajo en 1817, y décadas después habría de desarrollar Karl Weierstrass.
(Bernhard o Bernard Bolzano; Praga, actual República Checa, 1781 - id., 1848) Matemático checo. Tras estudiar teología, filosofía y matemáticas, fue ordenado sacerdote en 1805. Profesor de religión en praga y matemático aficionado, en 1820 las autoridades le prohibieron ejercer cualquier actividad académica a causa de su posicionamiento crítico con respecto a las condiciones sociales vigentes en el Imperio Húngaro. Las inquietudes científicas de Bolzano resultaron muy avanzadas para su tiempo, preocupado como estaba por los fundamentos de varias ramas de la matemática, a saber, la teoría de las funciones, la lógica y la noción de cardinal. Tras demostrar el teorema del valor intermedio, dio el primer ejemplo de una función continua no derivable sobre el conjunto de los números reales. En el campo de la lógica, trató la tabla de verdad de una proposición e introdujo la primera definición operativa de deducibilidad. Estudió asimismo, con anterioridad a Cantor, los conjuntos infinitos....
Comentarios
Publicar un comentario